Table 1: Columns for DP_metallicities_regions.csv.

Column	Unit	Description
nID		Identifier number for each region
name		Galaxy name
catID		Identifier within the catalogue that was used
RA	\deg	Right ascension (J2000)
DEC	\deg	Declination (J2000)
$C(\mathrm{H}eta)$		Balmer decrement
12+logOH_xx region		12+log(O/H) gas-phase metallicity using calibration xx
12+logOH_xx_errdown		16th percentile on distribution of 12+logOH_xx
$12 + \logOH_{xx}_{errup}$		84th percentile on distribution of 12+logOH_xx
logNO_PG16 region		N/O ratio using calibration PG16
$logNO_PG16_errdown$		16th percentile on distribution of logNO_PG16
logNO_PG16_errup		84th percentile on distribution of logNO_PG16
IZI_chi2		Goodness of fit for the IZI calibration
r/r25		Deprojected radius of the region, divided by R25
r/app		Deprojected radius of the region, divided by the
		semi-major axis from aperture matched photometry
spec_ref		Reference for the emission line flux

Metallicities for DustPedia regions

We have calculated metallicities using the 10143 star-forming regions with reddening corrected emission lines from DP_lines_regions.csv using a number of different calibrations. The N2 and O3N2 calibrations from Pettini & Pagel (2004), the S and R calibrations from Pilyugin & Grebel (2016, hereafter PG16S and PG16R), the theoretical calibration from Tremonti et al. (2004, hereafter T04), and the Bayesian-based IZI tool (Blanc et al., 2015) were used for our derivations. The O/N ratio is based on the Pilyugin & Grebel (2016) calibration. Errors on the line measurements were provided by GandALF or obtained directly from the literature. We then bootstrapped the measurements by generating 1000 new emission line fluxes assuming a normal distribution with the extinction-corrected emission line fluxes as mean and the measured error as the standard deviation of the distribution and calculating metallicities for each new set of emission lines. The 16th and 84th percentiles of the bootstrapped metallicity distribution give the 1σ uncertainties on the derived metallicities and are given in DP_metallicities_regions.csv (see Table 1 for all columns). See Section 3 in De Vis et al. (2019) for more details.